Testing longitudinal data by logarithmic quantiles
نویسندگان
چکیده
منابع مشابه
Group Testing for Longitudinal Data
We consider how to test for group differences of shapes given longitudinal data. In particular, we are interested in differences of longitudinal models of each group's subjects. We introduce a generalization of principal geodesic analysis to the tangent bundle of a shape space. This allows the estimation of the variance and principal directions of the distribution of trajectories that summarize...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Testing independent censoring for longitudinal data.
A common problem associated with longitudinal studies is the dropouts of subjects or censoring before the end of follow-up. In most existing methods, it is assumed that censoring is noninformative about missed responses. This assumption is crucial to the validity of many statistical procedures. We develop some nonparametric hypothesis testing procedures to test for independent censoring in the ...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2014
ISSN: 1935-7524
DOI: 10.1214/14-ejs965